4-8-1نانوسیم چیست؟
شاید هنوز ساخت تراشههای کامپیوتری که برای ایجاد سرعت محاسباتی بالا به جای جریان الکتریسیته از نور استفاده میکنند، تشخیص انواع سرطان و سایر بیماریهای پیچیده فقط با گرفتن یک قطره خون، بهبود و اصلاح کارتهای هوشمند و نمایشگرهای LCD ؛ تنها یک رویا برایمان باشد و این مسائل را غیر واقعی جلوه دهد اما محققین آینده قادر خواهند بود تمام این رویاها را به حقیقت تبدیل کنند و دنیایی جدید از ارتباطات و تکنولوژی را بواسطه معجزه نانوسیمها به ارمغان آورند.
تا کنون با نانوساختارهای مختلفی از جمله نانولولههای کربنی، نانوذرات و نانوکامپوزیت آشنا شدهاید؛ یکی دیگر از نانوساختارهایی که امروزه مطالعات و تحقیقات بسیاری را به خود اختصاص داده است نانوسیمها است.
عموماً سیم به ساختاری گفته میشود که در یک جهت (جهت طولی) گسترش داده شده باشد و در دو جهت دیگر بسیار محدود شده باشد. یک خصوصیت اساسی از این ساختارها که دارای دو خروجی میباشند رسانایی الکتریکی میباشد. با اعمال اختلاف پتانسیل الکتریکی در دو انتهای این ساختارها و در امتداد طولی شان انتقال بار الکتریکی اتفاق میافتد.
ساخت سیمهایی در ابعاد نانومتری هم از جهت تکنولوژیکی و هم از جهت علمی بسیار مورد علاقه میباشد، زیرا در ابعاد نانومتری خواص غیر معمولی از خود بروز میدهند. نسبت طول به قطر نانوسیمها بسیار بالا میباشد. ( L>>D )
مثالهایی از کاربرد نانوسیمها عبارتند از: وسایل مغناطیسی، سنسورهای شیمیایی و بیولوژیکی، نشانگرهای بیولوژیکی و اتصالات داخلی در نانوالکترونیک مانند اتصال دو قطعه ابر رسانای آلومینیومی که توسط نانوسیم نقره صورت میگیرد.
4-8-2انواع نانوسیمها:
1. نانوسیمهای فلزی: این نانوساختارها به دلیل خواص ویژهای که دارند نویدبخش کارایی زیادی در قطعات الکترونیکیاند.
توسعه الکترونیک و قدرت یافتن در این زمینه بستگی به پیشرفت مداوم در کوچک کردن اجزاء الکترونیکی است. با این حال قوانین مکانیک کوانتومی، محدودیت تکنیکهای ساخت و افزایش هزینههای تولید ما را در کوچکتر کردن تکنولوژیهای مرسوم و متداول محدود خواهد کرد. تحقیق فراوان در مورد تکنولوژیهای جایگزین علاقه فراوانی را متمرکز مواد در مقیاس نانو در سالهای اخیر کرده است. نانوسیمهای فلزی بخاطر خصوصیات منحصر به فردشان که منجر به کاربرد گوناگون آنها میشود، یکی از جذابترین مواد میباشند.
نانوسیمها میتوانند در رایانه و سایر دستگاههای محاسبهگر کاربرد داشته باشند. برای دستیابی به قطعات الکترونیکی نانومقیاس پیچیده، به سیمهای نانومقیاس نیاز داریم. علاوه بر این، خود نانوسیمها هم میتوانند مبنای اجزای الکترونیکی همچون حافظه باشند.
2. نانوسیمهای آلی: این نوع از نانوسیمها، همانطور که از نامشان پیداست، از ترکیبات آلی بهدست میآیند.
علاوه بر مواد فلزی و نیمه رسانا، ساخت نانوسیمها از مواد آلی هم امکانپذیر است. به تازگی، مادهای بنام «الیگوفنیلین وینیلین» برای این منظور در نظر گرفته شده است.
ویژگی این سیمها (نظیر رسانایی و مقاومت و هدایت گرمایی) به ساختار مونومر و طرز آرایش آن بستگی دارد.
3. نانوسیمهای هادی و نیمههادی: ساختار شیمیایی این ترکیبات باعث بوجود آمدن خواص جالب توجهی میشود.
آینده نانوتکنولوژی به توانایی محققین در دستیابی به فنون ساماندهی اجزای مولکولی و دستیابی به ساختارهای نانومتری بستگی دارد. محققین اکنون توانستهاند با تقلید از طبیعت به ساماندهی پروتئینهای حاصل از خمیر مایه برای تولید نانوسیمهای هادی دست یابند. ساماندهی اجزای زنده در طبیعت، بهترین و قدیمیترین نمونه ساخت «پائین به بالا» است و لذا میتوان از آن برای فهم و نیز یافتن روشهائی برای ساخت ادوات الکترونیکی و میکرومتری استفاده کرد. تا کنون از فنون ساخت «بالا به پائین» استفاده میشد که این فنون در مقیاس نانومتری اغلب پر زحمت و هزینهبر است و تجاریسازی نانوتکنولوژی به روشهای آسان و مقرون به صرفه نیاز دارد که بهترین الگوی آن هم طبیعت پیرامون ماست؛ فقط کافی است کمی چشمانمان را باز کنیم و با دقت بیشتری اطرافمان را بنگریم.
4. نانوسیمهای سیلیکونی: این نوع از نانوسیمها سمی نیست و به سلولها آسیبی نمیرسانند.
این نوع از نانوسیمها بیشترین کاربرد خود را در عرصه پزشکی مانند تشخیص نشانههای سرطان، رشد سلولهای بنیادی و ... نشان داده است که در ادامه به آن میپردازیم.
نمونهای از نانوسیمهای سیلیکونی
4-8-3روشهای ساخت نانوسیمها:
1. تکنیکهای لیتوگرافی
• لیتوگرافی نوری: در این روش از تغییرات شیمیایی در یک ماده سخت شونده در اثر نور استفاده میشود. از یک سری ماسکهای نوری برای تعریف مناطق فعال شونده در اثر نور استفاده میشود. یکی از محدودیتهای این تکنیک محدوده پراش موج نوری است. طول موج نوری که در حاضر در صنایع استفاده میشود در حدود nm 248میباشد ولی با طراحیهای دقیق مالک و به کارگیری بسیار دقیق پلیمرهای سختشونده میتوان به ابعاد کمتر nm 100 هم رسید.
• لیتوگرافی با اشعه الکترونی: در این روش عمدتا از یک پلیمر سختشونده و قرار دادن آن بر یک پایه استفاده میشود. آنگاه یک اشعه الکترونی با انرژی بالا بر روی سطح تابیده میشود با تابش اشعه الکترونی طرح مورد نظر شکل داده میشود. پس از یونیزه شدن ماده و حل شدن پلیمر توسط حلالهای شیمیایی طرح مورد نظر برای ساخت نانو سیم حاصل میشود.
• لیتوگرافی با پراب روش: لیتوگرافی با استفاده از پراب روشیپ برای ساخت نانوسیمهای زیر nm100 بکار میروند. پرابهای الکترونی مانند میکروسکوپ نیروی اتمی(AFM) و یا میکروسکوپ روش تونلی (STM) از انتخابهای این روش برای ساخت نانوسیمها میباشد.
از مزایای روشهای لیتوگرافی انعطاف این روشها در الگوسازی برای نانوسیمها میباشد. بعبارت دیگر با این روشها میتوان به نانوسیمها هر شکل قابل ترسیم را داد.
2. رسوب الکتروشیمیایی در حفرات: روشهای الکتروشیمیایی بطور گستردهای برای ساخت نانوسیمها استفاده میشود. یک الگوی مناسب باید حفراتی یکنواخت و بلند داشته باشد، قطر حفرات در این نوع الگو از چند نانومتر تا nm 20 میتواند داشته باشد.
فناوری نانو ، نوید کنترل خواص جدیدی از مواد را می دهد که زائیده ابعاد نانو مقیاس ذرات است ، همین خواص باعث شد شرکتهای خصوصی ، دولتها و سرمایهگذاریهای خطرپذیر جهان در سال 2005 حدود 15میلیارد دلار در این فناوری سرمایهگذاری کنند، همچنین براساس پیشبینیهای صورت گرفته بازار کالاهای تولیدی مبتنی بر این فناوری در سال 2015 به رقم 6.2 میلیارد دلار میرسد. تولید این محصولات نیازمند نانومواد ،اندازهگیری و فناوریهای ساخت است. صنعت الکترونیک در تجاری سازی فناوری نانو پیشگام است. نانوالکترونیک شامل نیمههادیهای کمتر از nm 90 ،اشکال جدیدی از حافظههای دارای نیمه هادی ، حافظههای اطلاعاتی نانوالکترومکانیکی، نمایشگرهای آلی ، نمایشگرهای نشر میدانی،نانو لولههای کربنی، حسگرهای مختلف و پارهای از ادواتی که اکنون در حال ساخت برای به کارگیری در ابزارآلات الکترونیکی میشود. طبق برآورد بازار تجهیزات نانوالکترونیک در سال 2005 نزدیک 60 میلیارد دلار بوده و به نظر می رسد تا سال 2010 به 250میلیارد دلار برسد. بازار نانومواد ونانوابزار مورد استفاده در تولید این تجهیزات 108میلیارد دلار بوده که از این رقم 10درصد آن مربوط به نانومواد ،ابزارها، تجهیزاتی مانند لیتوگرافی ماورابنفش دور، لیتوگرافی چاپ نانو ،کاتالیستها و نانوسیمها است.
4-8-4کاربردهای نانوسیم:
کاربرد نانوسیم در تشخیص بیماریها: از نانوسیم هایی که از مواد مورداستفاده در تراشه رایانههای امروزی مثل سیلیکون و نیترید گالیون ساخته شده است میتوان برای تشخیص بیماریها استفاده کرد . شاید بپرسید ابزار رایانهها چه ارتباطی به تشخیص بیماری و بدن انسان دارد ، بدن انسان نیز همانند یک رایانه باید حسگرهایی داشته باشد که بتواند در صورت بروز مشکل و خطا و یا وجود مواد سمی به ابزارهای هشداردهنده خارجی اخطار دهد و درصدد رفع آن برآید همانند یک رایانه که اگر مسیری اشتباه را در آن اجرا کنید و یا ویروسی در آن پیدا شود پیغام (ERROR) میدهد اما این کار چگونه امکان پذیر است؟!
دانشمندان موفق شدند نانوسیمهای انعطافپذیر و طویلی را تولید کنند که طولهای متغیر این نانوسیمها بین 1 تا nm100 و یا حتی در میلیمتر میباشد و از لحاظ مقایسه حدود هزار مرتبه باریکتر از موی انسان است. بلندی ، انعطافپذیری و استحکام این نانوسیمها خصوصیات ویژهای را به آن می بخشد . به عنوان مثال نازک بودن وطویل بودن باعث افزایش سطح آن میشود . لذا از این ساختارها می توان در طراحی حسگرهای بسیار سریع و حساس استفاده کرد. این نانوسیم ها توانایی تولید اشعه ماورای بنفش نامرئی را دارد ، نور از یک انتها وارد نانوسیم شده و از انتهای دیگر شروع به تابیدن میکند. نانوسیمها بدون هیچ اتلافی این نور را به طور موثری عبور میدهد. و در مسیر خود اگر به یک عامل بیماریزا یا ماده سمی برخورد کند نانوسیم شروع به تابیدن میکند و سیستم هشدار دهنده بسیار سریعی را ایجاد میکند و این میتواند بیماری را زودتر وسریعتر از هر آزمایشی تشخیص دهد.
استفاده از نانوسیمها در رگهای خونی برای تحریک اعصاب مغزی: همیشه انتقال فرستندههای کوچک به درون رگها و هدایت آنها بطرف محلهای موردنظر را در فیلمهای تخیلی دیده بودیم اما هیچ باور نمیکردیم که روزی این را در واقعیت ببینیم.
محققین توانستهاند نانوسیمهایی از جنس پلاتین که ضخامت آن 100 برابر نازکتر و ظریفتر از موی انسان است را ابداع کنند. آنها این نانوسیمها را به داخل رگهای خونی میفرستند و توسط دوربین کوچکی آنها را بطرف اعصاب مغزی هدایت میکنند. این روش برای کمک به یافتن علل مختلف و پیدایش بیماریهای عصبی از جمله پارکینسون بسیار مفید است. در گذشته برای یافتن علل مختلف پیدایش بیماریهای قلبی و عصبی، بدن را در هر نقطه میشکافتند تا علت بیماری را بیابند، اما امروزه با گسترش فنآوری نانوتکنولوژی هر وسیلهای را میتوان بصورت ظریف، نازک و حساس، اختراع و ابداع کرد و حتی آن را به درون ظریفترین رگ نیز فرستاد.
تنها مشکلی که محققان را کمی دچار سردرگمی کرده است تعدد رگهای خونی و سیستم گردش خون و عصب های فراوان در محدوده مغز است که فرستادن این نانوسیمها را کمی دشوار کرده است اما محققین درصدد یافتن راهی برای حل آن وساختن نانوسیمهای دقیقتر هستند.
استفاده از نانوسیمهای سیلیکونی برای هدفمند کردن رشد سلولهای بنیادین : تولید و رشد بافتها و سلولهای مورد نیاز برای بیماران نیازمند اهدافی است که دانشمندان در عرصه پزشکی همواره به دنبال آن هستند، از جمله ابزاری که میتواند این هدف را تحقق بخشد نانوسیم های سیلیکونی است. نانوسیم ها همچون تختی از میخها هستند که به صف شدهاند و قابلیت تغییر شکل و رشد را دارند ، برای این منظور از طیفی وسیعی از تحریکات مکانیکی و شیمیایی بعنوان فاکتور رشد استفاده می کنند اما به تازگی توانستهاند از محرکهای الکتریسیته نیز استفاده کنند و امیدوارند که استفاده از پالسهای الکتریکی در سلولها با استفاده از آرایه رسانای نانوسیمها در آیندهای نزدیک بعنوان شیوهای ارزشمند برای تحت تاثیر قرار دادن سلولهای بنیادین بکار روند.
4-9استفاده از نانو مواد در باتری های لیتیومی
مواد نانوساختار به دليل سطح تماس زياد، تخلخل و. . . بسيار مورد توجه صنعت باتريهاي ليتيومي قرار گرفتهاند. اين مشخصات امکان انجام واکنشهاي فعال جديد، کاهش مسير انتقال يونهاي ليتيوم، کاهش سرعت جريان سطح ويژه و بهبود پايداري و ظرفيت ويژه باتريهاي جديد را فراهم کرده است. علاوه بر اين، مواد نانوکامپوزيتي که براي مسيرهاي هادي الکتروني طراحي ميشوند، ميتوانند مقاومت داخلي باتريهاي ليتيومي را کاهش داده، سبب افزايش ظرفيت ويژه، حتي در سرعت جريانهاي شارژ/ تخليه بالا شوند.
نانومواد به طور گسترده در علوم زيستي، فناوري اطلاعات، محيط زيست و ديگر زمينههاي مرتبط استفاده گستردهاي دارند. اخيراً مواد نانوساختار توجه پژوهشگران براي کاربرد در تجهيزات ذخيره انرژي به خصوص در انواعي که سرعت جريان شارژ و تخليه بالايي دارند، مثل باتريهاي ليتيومي، جلب کردهاند.توسعه تجهيزات ذخيره انرژي با توان و دانستيه انرژي بالاتر، کليد موفقيت وسايل نقليه الکتريکي و الکتريکي هيبريدي EV) و(HEV است و انتظار ميرود جايگزين حداقل بخشي از وسايل نقليه امروزي شده، مشکلات آلودگي هوا و تغييرات اقليمي را رفع کند. اين فناوريهاي ذخيره انرژي متکي به علوم مواد جديد هستند که به عنوان نمونه ميتوان از توسعه الکترودهايي نام برد که قابليت شارژ و تخليه در سرعت جريان بالا را دارند.
باتريهاي ليتيومي قابل شارژ شامل يک الکترود مثبت (کاتد)، الکتروليت حاوي يونهاي ليتيوم و يک الکترود منفي (آند) هستند. جنس الکترودهاي مثبت و منفي اغلب باتريهاي تجاري ليتيومي بهترتيب از LiCoO2 و گرافيت است که هر دو به عنوان جايگاههاي تبادل يونهاي ليتيوم عمل ميکنند. در حين فرايند شارژ کردن باتري، يونهاي ليتيوم از الکترود LiCoO2 جدا، همزمان به وسيله الکترودگرافيت جذب شده و با گرفتن الکترون بار کلي را خنثي نگه ميدارند. در حين فرايند تخليه باتري، يونهاي ليتيوم از الکترود منفي خارج و در همان زمان بر روي الکترد مثبت جاي ميگيرند.
اين فرايند الکتروشيميايي، يک واکنش اکسيد- احياي حالت جامد است که طي آن، انتقال الکتروشيميايي بار بين يونهاي متحرک و ساختار يک جامد هادي يون و الکترون صورت ميگيرد. معمولاً حالت مطلوب آن است که مقدار انرژي ذخيره شده در واحد جرم يا حجم باتري تا حد ممکن بالا باشد. براي مقايسه محتواي انرژي باتريهاي ليتيومي، از پارامتر دانستيه ويژه انرژي ( Wh/Kg) و دانستيه انرژي (Wh/l ) استفاده ميشود؛ در حالي که قابليت سرعت، برحسب دانستيه ويژه توان ( Wh/Kg) و دانستيه توان (Wh/Kg ) بيان ميشود. براي HEVها دانستيه ويژه انرژي مورد نياز و دانستيه ويژه توان باتريهاي ليتيومي بايد بهترتيب 50Kw/kgبيش از3Wh/Kgو باشد؛ حال آنکه EVها مقادير خيلي بيشتري نياز دارند، پس به نظر ميرسد الکترودهاي نانوساختار اميد بخشترين مسير براي رسيدن به اين هدف هستند.
به طول کلي مزاياي بالقوه الکترودهاي نانوساختار را ميتوان به شرح زير خلاصه کرد:
1- واکنشهاي جديد که امکان انجام آنها با مواد تودهاي وجود ندارد؛
2- سطح تماس زياد الکترود- الکتروليت که منجر به سرعت بيشتر شارژ و تخليه ميشود؛
3- مسير انتقال کوتاهتر الکترونها و يونهاي ليتيوم (که امکان عمل در هدايت پايين يونهاي ليتيوم و الکترونها يا در توانهاي بالاتر را فراهم ميکند)
در اينجا از نتايج تجربي اخير را که نشاندهنده مزاياي الکترودهاي نانوساختار است، مرور ميکنيم.
4-9-1واکنشهاي جديد
در سالهاي اخير تلاشهاي زيادي در زمينه تحقيق بر روي موادي صورت گرفت که به نظر ميرسد در حالت تودهاي از نظر الکتروشيميايي غيرفعالند، ولي عملکرد الکتروشيميايي خوبي در مقياس نانو از خود بروز ميدهند. به عنوان مثال، نانوذرات اکسيد، سولفيد، فلوئوريد و نيتريد برخي از فلزات واسطه ميتوانند به عنوان آند در باتريهاي ليتيومي بهکار روند. واکنش اين ترکيبات با ليتيوم منجر به تشکيل نانوذرات جاسازي شده در بستر LizX ميشود) X ميتواند N، F، S يا O باشد(.
فلزات واسطه با ليتيوم آلياژ فلزي تشکيل نميدهند؛ بنابراين، سازوکار واکنشپذيري ليتيوم با فرايندهاي استخراج – الحاق ليتيوم يا آلياژ شدن ليتيوم متفاوت است. فرايند متداول استخراج- الحاق ليتيوم در نشان داده شده است؛ در حالي که واکنش آلياژ شدن ليتيوم به صورت زير نوشته ميشود:
1)که M ميتواند Sn، Si، Pb، Bi، Sb، Ag، Al يا يک آلياژ مرکب باشد. در عوض، سازوکار واکنش ترکيبات فلزات واسطه با Li در حين فرايند شارژ و تخليه، شامل تشکيل و رسوب LizX به همراه احيا و اکسيد شدن نانوذرات فلزي است.
2)که M در اينجا يک فلز واسطه مانند Fe، Co، Ni، Cu و. . . است. همان طور که در اين معادلات ديده ميشود، تفاوت اصلي بين معادلات 1 و 2 تشکيل و رسوب LizX يا آلياژي از ليتيوم است.
در يک مطالعه اصولي، Poizot و Coauthors نشان دادند که الکترودهاي ساخته شده از نانوذرات اکسيد عناصر واسطه در هنگام شارژ يا تخليه با پتانسيل 5/3 تا 01/0 ولت نسبت بهLi+/Li ، ميتوانند ظرفيت ويژه 700mah/g با ماندگاري ظرفيت 100 درصد براي حدود صد بار عمل شارژ/ تخليه و سرعت جريان بالاي شارژ مجدد داشته باشند. ظرفيت بالاي ذخيره ليتيوم در نانوذرات اکسيد فلزي واسطه در پتانسيل کم به وسيله سازوکار بينسطحي ذخيره بار تفسير ميشود. مطابق اين مدل، يونهاي ليتيوم بر روي بخش اکسيدي سطح مشترک ذخيره ميشوند؛ در حالي که الکترونها با استقرار بر روي بخش فلزي، منجر به جدايي بار ميشوند. بر اين اساس، محدود کردن اندازه ذرات فلزي، فعاليت الکتروشيميايي آنها را در تشکيل و رسوب دادن Li2O افزايش ميدهد. با کاهش اندازه ذره، سهم تعداد کل اتمها در نزديکي سطح يا روي آن افزايش مييابد که اين امر واکنشپذيري الکتروشيميايي ذرات را بيشتر و مؤثرتر ميکند. اين بررسيها علت وابستگي زياد کارايي اين مواد به درجه تجمع و به هم پيوستگي آنها را نشان ميدهد. به طور نمونه، kim و همکارانش، اخيراً نشان دادند که ذرات SnO2 با قطر سه نانومتر نسبت به ذرات چهار تا هشت نانومتري، ظرفيت قابل توجه و پايداري چرخه بيشتري دارند؛ زيرا توزيع اين مواد در بستر Li2O مناسبتر است که اين امر منجر به تجمع کمتر نانوذرات Sn در خوشههاي اتمي ميشود.
الکترودهاي نانوساختار نه تنها قادر به انجام برخي واکنشهاي جديد هستند؛ بلکه ميتوانند خواص الکتروشيميايي نظير ظرفيت ويژه ذخيره انرژي، توانايي جريان شارژ/ تخليه بالا و پايداري چرخه را نسبت به نمونههاي معمولي بهبود بخشند. اين امر از مسير نفوذ کوتاهتر و سطح تماس زياد بين مواد فعال و الکتروليت ناشي ميشود. نفوذ يونهاي ليتيوم شديداً به طول مسير انتقال و مکانهاي قابل دسترسي به روي سطح مواد فعال بستگي دارد. ترکيباتي که داراي ضريب نفوذ ليتيوم کمتري هستند معمولاً در حالت توده و به خصوص در سرعتهاي جريان بالا، ظرفيت ذخيره ليتيوم کمتري از خود نشان ميدهند. اين حالت مخصوص نوع TiO2 روتيل است که تنها ميتواند مقادير ناچيزي از يونهاي ليتيوم را در دماي اتاق در خود جاي دهد[11-13]. نفوذ يونهاي ليتيوم در TiO2 روتيل شديداً ناهمسانگرد است و نفوذ در طول کانالهاي محور C با سرعت بيشتري روي ميدهد. ضمناً انحراف قابل توجه در ساختار روتيل نفوذ يوني ليتيوم را در صفحات b-a در دماي پايين کند ميکند . اين امر مانع رسيدن يونهاي ليتيوم به مکانهاي چهاروجهي مناسب در صفحات a-b و سبب جداسازي آنها در مجاري C ميشود.
با اين وجود، اين جايگزيني در مقياس نانو کاملاً متفاوت است. براي ذرات TiO2 روتيل با ميانگين قطر 15 نانومتر بيشترين مقدار استقرار ليتيوم (x>1) in LixTiO2در مطالعات اخير مشاهده شدهاست. علاوه بر اين، به طور متوسط حدود 7/0 يون ميتواند بهطور برگشتپذير در هر ذره TiO2 روتيل ذخيره شده، و در چرخه بعدي رها شود. نتايج مشابهي نيز از سوي Hu و Reddy گزارش شده است.
ولي در الکترود TiO2 روتيل نانوساختار، کوتاهي مسير نفوذ، نفوذ يونهاي ليتيوم در صفحات a-b را محدود کرده است. بدين معني که يونهاي ليتيوم در يک زمان معين ميتوانند محلهاي چهاروجهي بيشتري را در اين صفحات اشغال کنند. در کنار اين، مطالعه تئوري Stashans و همکارانش نشان داد که در پايدارترين حالت- صفحه (0 1 1) TiO2 روتيل-استقرار ليتيوم بيشتر يک اثر سطحي است، زيرا اتم ليتيوم در توده نفوذ نميکند.
4-9-2سطح تماس زياد الکترود- الکتروليت
ذخيره سطحي ليتيوم نقش مهمي در ظرفيت نهايي نانوالکترودها ايفا ميکند. علاوه بر اين، همان طور که در بسياري از مواد آندي ، سطح تماس بيشتر الکترود- الکتروليت ميتواند به اصلاح ظرفيت جريان شارژ و تخليه بالا منجر شود. اين امر با توجه به دو عامل توصيف ميشود:
نخست آنکه اندازه کوچک ذرات، يعني طول انتقال کوتاه، نفوذ کامل ليتيوم را در زمان کمتر يا به عبارت ديگر سرعت جريان بالاتر شارژ يا تخليه را امکانپذير ميسازد. از طرف ديگر ذخيره سطحي ليتيوم فقط به مساحت سطح بستگي دارد نه به زمان نفوذ؛ بنابراين سطح تماس بيشتر الکترود- الکتروليت براي عمل در سرعت جريان بالا مفيد است.
دوم آنکه با استفاده از نانوالکترودها ميتوان دانسيته جريان ويژه مواد فعال را به دليل سطح تماس زياد تا حد زيادي کم کرد. دانسيته جريان ويژه کمتر ميتواند الکترود را به طور مؤثري پايدار کرده، ظرفيت بالا را در دانسيته جريان بالا حفظ کند. به عنوان مثال Poizot و همکارانشنشان دادند که نانوالکترودهاي CoO ميتواند حدود 85 درصد از کل ظرفيت را در سرعت C2 سرعت جريان تئوري مورد نياز براي شارژ يا تخليه ظرفيت باتري در يک ساعت است) نگه دارد. همچنين در کنار ظرفيت ويژه بالا، عملکرد بسيار سريع براي نانوالکترودهاي TiO2 روتيل مشاهده شده است. اين يافتهها براي اسپينل ليتيوم تيتانات (Li4Ti5O12) نيز صادق است
. Li4Ti5O12 به دليل در حين فرايند استخراج – الحاق يک آند بسيار فعال به شمار آمده، سبب پايداري فوقالعاده چرخه ميشود. ولي ماهيت نيمهرسانايي آن نشان ميدهد که عملکرد شارژ و تخليه آن در جريانهاي بالا نسبت به ماده تودهاي ضعفيفتر است. Kavan و همکارانش نشان دادند که الکترودهاي Li4Ti5O12 نانو بلورين فعاليتي عالي نسبت به جاسازي ليتيوم حتي در سرعت شارژ برابر با ( 1(C=175250C نشان ميدهند. اين مواد با سطح تماسي بين 20 تا صد متر مربع بر گرم ميتوانند تقريباً تا حد کل ظرفيت ظاهري Li4Ti5O12 و در محدوده وسيعي از سرعت جريان (از 2C تا 250C )شارژ يا تخليه شوند.
در مطالعه ديگري، وابستگي ظرفيت ذخيره ليتيوم و عملکرد سريع الکترودهاي TiO2 آناتاز با اندازه ذرات بررسي و مشخص شد که با کاهش اندازه ذرات الکترود آناتاز باريک شدگي صفحات استخراج – الحاق ليتيوم در سرعت جريانهاي بالا به تأخير ميافتد. همچنين مشخص شد که سهم ذخيره سطحي ليتيوم تقريباً مستقل از سرعت جريان و تعداد چرخههاست. اين امر منجر به عملکرد مناسب و پايدار چرخه شارژ- تخليه در نانوالکترودهاي TiO2 آناتاز، حتي در سرعت جريانهاي بالا ميشود
4-9-3مسير انتقال کوتاه
به طور کلي فرايند شارژ- تخليه شامل يک واکنش اکسيد- احياست که در آن انتقال يونهاي ليتيوم و الکترونها مخصوصاً در شارژ يا تخليههاي سريع نقش مهمي دارند. مواد نانوساختار ميتوانند مسير انتقال يونها و الکترونها را کوتاه کنند. در مقابل، الکترودهاي باتريهاي تجاري اغلب از مواد ميکروني مثلاً پودرهاي حاوي ذرات ميکروني با سطح ويژه کم تشکيل شدهاند. از لحاظ نفوذ، اين مواد ميکروني بهدليل طولاني بودن مسير انتقال يونهاي ليتيوم و کم بودن سطح تماس بين الکترود و الکتروليت براي فرايندهاي شارژ – تخليه سريع مناسب نيستند.
نفوذ يونهاي ليتيوم به دليل ماهيت فاز الکتروليت، سطح مشترک مايع- جامد، و پيچ و خم مسير نفوذ يک پديده پيچيده است و لازم است که اندازه ذرات مورد توجه قرار گيرد.اگر فقط به کل فرايند توجه کنيم و فرض کنيم که ضريب نفوذ تنها به اين عوامل وابسته است، ميتوان طول نفوذ را با استفاده از رابطه تعيين کرد که D و T به ترتيب ضريب نفوذ و زمان هستند. ظرفيت ويژه باتري (Q) به وسيله رابطه Q=IT به دست ميآيد که I دانسيته جريان ويژه شارژ- تخليه در واحدA/Kg ياMa/g است. در ظرفيت ثابت، افزايش I منجر به کاهش سريع (T) ميشود. بنابراين، ظرفيت ويژه مؤثر به نسبت حجم (r3- (r-L) 3) /r3 بستگي دارد که r شعاع ذرات فعال است. براي رسيدن به حداکثر ظرفيت ويژه، طول نفوذ مورد نياز (L) بايد از (r) بزرگتر باشد. ذراتي با اندازه r2 بايد حدود دو نانومتر باشند. اين موضوع نشان ميدهد که مواد الکترودي نانوساختار براي تبديل و ذخيره دانستيه انرژي و توان بالا ضرورياند.
در حدود مواد فعال و متخلخل TiO2 نيز صادق است]3[. TiO2 متخلخل يک مزوساختار ششوجهي حاوي حفرات يکنواخت با قطر چهار تا پنج نانومتر از نانوبلورهاي TiO2 آناتاز است که در دانستيه جريان بالا (10m2/g ) ظرفيت ويژه بالايي ( 260mah/g) از خود نشان ميدهند. نتايج مشابهي براي نانوبلورهاي TiO2 آناتاز با قطر شش نانومتر ، نيز مشاهده شده است.
براي اصلاح عملکرد شارژ- تخليه با سرعت جريان بالا، مسير انتقال الکترون نيز بايد تا حد ممکن کوتاه باشد. از معمولاً کربن دوده به عنوان يک ماده هادي کمکي در باتريهاي ليتيومي استفاده ميشد. ولي مشکلاتي نظير سطح تماس، آلودگي سطح و. . . در فرآيند اختلاط مکانيکي مواد هادي کمکي و مواد فعال الکترود وجود داشت؛ بنابراين کاهش مقاومت از طريق کوتاه کردن مسير انتقال الکترون در فرايند شارژ- تخليه هنوز مطرح است. برخي روشهاي سنتز شيميايي براي سنتز مستقيم مواد فعال الکترود نظير V2O5 ، TiO2 و MnO بر روي کربن دوده استيلني ابداع و گزارش شدهاند. اخيراً روشي براي سنتز مواد فعال متخلخل از قبيل No ، Fe2O3 و Co3O2 براي تشکيل مواد نانو/ميکروساختار پوسته – هسته بر روي يک سطح مشبک نيکلي گزارش شد . Tarascon و همکارانشاولين کساني بودند که نشان دادند الکترودهاي منفي شامل NiO، FeO يا CoO، داراي ظرفيت ويژه بالا تا حد 700 در سرعت جريان شارژ- تخليه پايين هستند، ولي استفاده از مواد هسته- پوسته فعال ميکرو/نانوساختار سنتزي، ظرفيت ويژه مشابهي را حتي در سرعت شارژ- تخليه خيلي بالا نشان ميدهند.
ظرفيتهاي ويژه در حدود (695mah/g (درA/g 10) و 780mah/g (در 13، به ترتيب با استفاده از مواد فعال پوسته- هسته Ni- NiO و Ni- Fe2O3 به دست آمدند .
در مواد فعال نانو/ميکروساختار پوسته- هسته، قطر سيم نيکلي خيلي نازک است. لذا سيمها و نانولولههاي هادي با قطر چند نانومتر تا چند ده نانومتر براي انتقال الکتروني به عنوان يک هسته مناسبتر هستند. مواد فعال نانوبلوري سنتز شده بر روي نانولولههاي کربني نيز براي باتريهاي ليتيومي پرسرعت مورد بررسي قرار گرفتهاند و رفتار شارژ- تخليه اصلاح شدهاي را در دانسيته جريان بالا نشان دادهاند.
با وجود اين، سنتز مواد فعال نانوساختار بر روي نانولولهها و نانوسيمهاي هادي هنوز يکي از اميدبخشترين زمينههاي تحقيقاتي است.
الکترودهاي نانوساختار براي عملکرد پايدار چرخه
الکترودهاي نانوساختار در کنار عملکرد بسيار مناسب در سرعت جريانهاي بالا، پايداري چرخه خوبي دارند.
کم شدن ظرفيت باتريهاي ليتيومي در حين چرخه شارژ و تخليه معمولاً به دليل انقباض و انبساط حجمي زياد ناشي از فرايندهاي استخراج – الحاق ليتيوم يا آلياژ شدن ليتيوم در باتري است. به عنوان مثال، Si به عنوان الکترود منفي باتريهاي ليتيومي داراي بالاترين ظرفيت تئوري 4200 است.با وجود اين، استفاده تجاري از آن به واسطه تغييرات قابل توجه حجم در حين فرآيند محدود شده است. الکترودهاي نانوساختار ميتوانند انبساط و انقباض حجم را از بين برده، سبب پايداري چرخه عملکرد باتري شوند.
به طور نمونه، نوع جديدي از الکترودهاي نانوکامپوزيتي Si/C ظرفيت برگشتپذير خيلي بالا (حدود 1000) و ماندگاري ظرفيت خوبي (8/99 درصد) از خود نشان ميدهند. گمان ميرود که نقش الکترود کامپوزيتي نانوساختار در کاهش تغييرات حجم Si در حين فرايندهاي شارژ و تخليه، علت ظرفيت و پايداري بالا در اين باتريها باشد.
نانوتكنولوژي و صنعت نفت10-4
فناوري نانو ميتواند اثرات قابل توجهي در صنعت نفت داشته باشد، در مطلب زير بعد از اشاره به برخي از اين تأثيرات، تعدادي از كاربردهاي فناوري نانو در صنعت نفت بويژه در بحث آلودگي محيط زيست و نيز سنسورهاي نانو به طور مختصر معرفي گرديده است:
مقدمه هنگامي كه ريچارد اسملي ( Richard Smally ) برنده جايزه نوبل، بالك مينسترفلورسنس را در سال 1985 در دانشگاه رايس كشف نمود، انتظار اندكي داشت كه تحقيق او بتواند صنعت نفت را متأثر سازد. سازمان انرژي آمريكا ( DOE ) سرمايهگذاري خود را در قسمت فناوري نانو با 62 درصد افزايش داد تا مطالعات لازم در زمينة موادي با نامهاي باكيبالها (Bulky Balls ) و باكيتيوبها ( Bulky Tubes ) استوانههاي كربني كه داراي قطر متر ميباشند صورت گيرد. نانولولههاي كربني با وزني در حدود وزن فولاد، صد برابر مستحكم تر از آن بوده، داراي رسانش الكتريكي معادل با مس و رساني گرمايي هم ارز با الماس ميباشند. نانوفيلترها ميتوانند به جداسازي مواد در ميدانهاي نفتي كمك كنند و كاتاليستهاي نانو ميتوانند تأثير چندين ميليارد دلاري در فرآيند پالايش بهدنبال داشته باشند. از ساير مزاياي نانولولههاي كربني ميتوان به كاربرد آنها در تكنولوژي اطلاعات ( IT ) نظير ساخت پوششهاي مقاوم در مقابل تداخلهاي الكترومغناطيسي، صفحههاي نمايش مسطح، مواد مركب جديد و تجهيزات الكترونيكي با كارآيي زياد اشاره نمود.
علم نانو يك تحول بزرگ در مقياس بسيار كوچك1-10-4
بسياري از محققان و سياستمداران جهان معتقدند كه علم نانو ميتواند تحولات اساسي در صنعت جهاني ايجاد نمايد صنعت نفت نيز از پيشرفت اين تكنولوژي بهرهمند خواهد گشت.
علم نانو ميتواند به بهبود توليد نفت و گاز با تسهيل جدايش نفت وگاز در داخل مخزن كمك نمايد. اين كار با درك بهتر فرآيندها در سطوح مولكولي امكانپذير ميباشد. با توجه به اينكه نانو مربوط به ابعادي در حدود متر ميباشد، نانوتكنولوژي به مفهوم ساخت مواد و ساختارهاي جديد توسط مولكولها و اتمها در اين مقياس ميباشد.
خوشبختانه كاربردهاي عملي نانو در صنعت نفت جايگاه ويژهاي دارند. نانوتكنولوژي ديدگاههاي جديد جهت استخراج بهبوديافتة نفت فراهم كرده است. اين تكنولوژي به جدايش موثرتر نفت و آب كمك ميكند . با افزودن موادي در مقياس نانو به مخزن ميتوان نفت بيشتري آزاد نمود. همچنين ميتوان با گسترش تكنيكهاي اندازهگيري توسط سنسورهاي كوچك، اطلاعات بهتري دربارة مخزن بدست آورد.
مواد نانو
صنعت نفت تقريباً در تمام فرآيندها احتياج به موادي مستحكم و مطمئن دارد. با ساخت موادي در مقياس نانو ميتوان تجهيزاتي سبكتر، مقاومتر و محكمتر از محصولات امروزي توليد نمود. شركت نانوتكنولوژي GP در هنگكنگ يكي از پيشگامان توسعة كربيد سيليكون، يك پودر سراميكي در ابعاد نانو ميباشد.
با استفاده از اين پودرها ميتوان مواد بسيار سختي توليد نمود. اين شركت در حال حاضر مشغول مطالعه و تحقيق بر روي ساير مواد مركب ميباشد و معتقد است كه ميتوان با نانوكريستالها تجهيزات حفاري بادوامتر و مستحكمتري توليد كرد. همچنين متخصصان اين شركت يك سيال جديد حاوي ذرات و نانوپودرهاي بسيار ريز توليد نمودهاند كه بهطور قابل توجهي سرعت حفاري را بهبود ميبخشد. اين مخلوط آسيبهاي وارده به ديوارة مخزن در چاه را حذف نموده و قابليت استخراج نفت را افزايش ميبخشد.
آلودگي
آلودگي توسط مواد شيميايي و يا گازهاي آلاينده يك مبحث بسيار دشوار در توليد نفت و گاز ميباشد. نتايج بدستآمده از تحقيقات دانشمندان حاكي از آن است كه نانوتكنولوژي ميتواند تا حد مطلوبي به كاهش آلودگي كمك كند. در حال حاضر فيلترها و ذراتي با ساختار نانو در حال توسعه ميباشند كه ميتوانند تركيبات آلي را از بخار نفت جدا سازند. اين نمونهها عليرغم اينكه اندازهاي در حدود چند نانومتر دارند، داراي سطح بيروني وسيعي بوده و قادر به كنترل نوع سيال گذرنده از خود ميباشند. همچنين كاتاليستهايي با ساختار نانو جهت تسهيل در جداسازي سولفيد هيدروژن، آب، مونوكسيدكربن، و دياكسيد كربن از گازطبيعي در صنعت نفت بكار گرفته ميشوند. در حال حاضر مطالعاتي بر روي نمونههايي از خاك رس در ابعاد نانو و جهت تركيب با پليمرهايي صورت ميپذيرد كه بتوانند هيدروكربنها را جذب نمايند. بنابراين ميتوان باقيماندههاي نفت را از گل حفاري جدا نمود
سنسورهاي هيدروژن خود تميز كننده
خواص فوتوكاتاليستي نانوتيوبهاي تيتانيا در مقايسه با هر فرمي از تيتانيا بارزتر ميباشد، بطوريكه آلودگيهاي ايجادشده تحت تابش اشعة ماوراء بنفش بهطور قابل توجهي از بين ميروند. تا اينكه سنسورها بتوانند حساسيت اصلي خود نسبت به هيدروژن را حفظ نمايد. تحقيقات انجامگرفته در اين زمينه حاكي از آن است كه نانوتيوبهاي تيتانيا داراي يك مقاومت الكتريكي برگشتپذير ميباشند، بطوريكه اگر هزار قطعه از آنها در مقابل يك ميليون اتم هيدروژن قرار بگيرند، مقاومت الكتريكي آن در حدود يكصد ميليون درصد افزايش مييابد.
سنسورهاي هيدروژن بطور گستردهاي در صنايع شيميايي، نفت و نيمهرساناها مورد استفاده قرار ميگيرند. از آنها جهت شناسايي انواع خاصي از باكتريهاي عفونتزا استفاده ميگردد. به هر حال محيطهايي نظير تأسيسات و پالايشگاههاي نفتي كه سنسورهاي هيدروژن از كاربردهاي ويژهاي برخوردار ميباشند، ميتوانند بسيار آلوده و كثيف باشند اين سنسورهاي هيدروژن نانوتيوبهاي تيتانيا هستند كه توسط يك لاية غيرپيوستهاي از پالاديم پوشانده شدهاند. محققان اين سنسورها را به مواد مختلفي نظير اسيد استريك ( يك نوع اسيد چرب )، دود سيگار و روغنهاي مختلفي آلوده نمودند و سپس مشاهده كردند كه تمام اين آلودهكنندهها در اثر خاصيت فوتوكاتاليستي نانوتيوبها از بين ميروند. حد نهايي آلودگيها زماني بود كه دانشمندان اين سنسورها را در روغنهاي مختلفي غوطهور ساخته و سنسورها توانستند خواص خود را بازيابند. محققان سنسورها را در دماي اتاق به مقدار هزار قطعه در مقابل يك ميليون اتم هيدروژن در معرض اين گاز قرار دادند و مشاهده نمودند كه در طرحهاي اولية سنسور مقاومت الكتريكي آن به ميزان 175000 درصد تغيير ميكند. سپس سنسورها را توسط لايهاي به ضخامت چندين ميكرون از روغن موتور پوشاندند تا بطور كلي حساسيت آنها نسبت به هيدروژن از بين برود. سپس اين سنسورها را در هواي عادي به مدت 10 ساعت در معرض نور ماوراء بنفش قرار دادند و پس از يك ساعت مشاهده نمودند كه سنسورها مقدار قابل توجهي از حساسيت خود را بدست آورده و پس از گذشت 10 ساعت تقريباً بطور كامل به وضعيت عادي خود بازگشتند.
عليرغم قابليت بازگشتي بسيار مناسب اين سنسورها نميتوانند پس از آلودگي به انواع خاصي از آلودهكنندهها حساسيت خود را باز يابند براي مثال روغن WQ -40 به علت دارابودن مقداري نمك خاصيت فوتوكاتالسيتي نانوتيوبها را تا حد زيادي از بين ميبرد.
با افزودن مقدار اندكي از فلزات مختلف نظير قلع، طلا، نقره، مس و نايوبيم، يك گروه متنوعي از سنسورهاي شيميايي بدست ميآيند. اين فلزات خاصيت فوتوكاتاليستي نانوتيوبهاي تيتانيا را تغيير ميدهند. به هر حال سنسورها در يك محيط غيرقابل كنترل در دنياي واقعي توسط مواد گوناگوني نظير بخارهاي آلي فرار، دودة كربن و بخارهاي نفت و همچنين گرد و غبار آلوده ميگردند. قابليت خودپاككنندگي اين سنسورها طول عمر آنها را افزايش و از همه مهمتر خطاي آنها را كاهش ميدهد.
سنسورهاي جديد در خدمت بهبود استخراج نفت
براساس آخرين اطلاعات چاپ شده توسط سازمان انرژي آمريكا، استخراج نفت در حدود دو سوم از چاههاي نفت آمريكا اقتصادي نميباشد. با توجه به دما و فشار زياد در محيطهاي سخت زيرزميني، سنسورهاي قديمي الكتريكي و الكترونيكي و ساير لوازم اندازهگيري قابل اعتماد نميباشند و در نتيجه شركتهاي استخراج كنندة نفت در تهية اطلاعات لازم و حساس جهت استخراج كامل و مؤثر نفت از مخازن با برخي مشكلات مواجه ميباشند.
در حال حاضر محققان در آزمايشگاه فوتونيك دانشگاه صنعتي ويرجينيا در حال توسعة يكسري سنسورهاي قابل اعتماد و ارزان از فيبرهاي نوري جهت اندازهگيري فشار، دما، جريان نفت و امواج آكوستيك در چاههاي نفت ميباشند. اين سنسورها بهعلت مزايايي نظير اندازة كوچك ،ايمني در قبال تداخل الكترومغناطيسي ، قابليت كارآيي در فشار و دماي بالا و همچنين محيطهاي دشوار، مورد توجه بسيار قرار گرفتهاند. از همه مهمتر اينكه امكان جايگزيني و تعويض اين سنسورها بدون دخالت در فرآيند توليد نفت و باهزينة مناسب فراهم ميباشد. در حال حاضر عمل جايگزيني و تعويض سنسورهاي قديمي در چاههاي نفت ميليونها دلار هزينه در پي دارد. سنسورهاي جديد از نظر توليد بسيار مقرون به صرفه بوده و اندازهگيريهاي دقيقتري ارائه ميدهند.
انتظار ميرود كه تكنولوژي اين سنسورها توليد نفت را با ارائه اندازهگيريهاي دقيق و قابل اعتماد و كاهش ريسكهاي همراه با اكتشاف و حفاري نفت بهبود بخشد. همچنين سنسورهاي جديد بهعلت برخي كاربردهاي ويژه نظير استخراج دريايي و افقي نفت، جايي كه بكاربستن سنسورهاي قديمي در چنين شرايطي بسيار مشكل ميباشد، از توجه ويژهاي برخوردارند.
4-11کاربرد نانو در الکترونیک
4-11-1مقدمه:
وجود يك سري مختصات ويژه نانولولههاي كربني، آن ها را به انتخاب ايده آلي براي بسياري از كاربردها تبديل كرده است.
امروزه در روند تحقيق درباره نانولولهها توجه و تعمق ويژهاي بر روي استفاده از آن ها در ساخت ابزارها متمركز شده است. اكثر پژوهشگراني كه در دانشگاهها و آزمايشگاههاي تحققاتي سرتاسر دنيا بر روي نانولولهها كار ميكنند با خوشبيني پيشبيني ميكنند كه در آيندهاي نزديك نانولولهها كاربردهاي صنعتي وسيعي خواهند داشت.
هماكنون امكان ساخت ابزارهاي بسيار جالبي وجود دارد، اما در خصوص موفقيت تجاري آن ها، بايد در آينده قضاوت كرد. تقريباً تمام مقالات به طور ضمني به كاربرد نانولولهها و بهرهبرداري تجاري از آن ها در آينده اشاره دارند. آينده كاربرد نانولولهها در بخش الكترونيك روشن است؛ خواص الكتريكي و پايداري شيميايي بي بديل نانولولهها به طور قاطع ما را به سمت استفاده از اين خواص سوق خواهد داد. بنابراين در ادامه به شرح چند مورد از حوزههاي مهم كاربرد نانولولهها مي پردازيم.
4-11-2ترانزيستورها
نانولولهها در آستانه كاربرد در ترانزيستورهاي سريع هستند، اما آن ها هنوز هم در اتصالات داخلي استفاده ميشوند. بسياري از طراحان دستگاهها تمايل دارند به پيشرفتهايي دست يابند كه آن ها را به افزايش تعداد اتصالات داخلي دستگاهها در فضاي كوچك تر، قادر نمايد. ترانزيستورهاي ساخته شده از نانولولهها داراي آستانه ميباشند (يعني سيگنال بايد از يك حداقل توان برخوردار باشد تا ترانزيستور بتواند آن را آشكار كند) كه ميتوانند سيگنالهاي الكتريكي زير آستانه را در شرايط اختلال الكتريكي يا نويزآشكار و رديابي نمايند. همچنين از آنجايي كه ضريب تحرك، شاخص حساسيت يك ترانزيستور براي كشف بار يا شناسايي مولكول مجاور ميباشد، لذا ضريب تحرك مشخص ميكند كه قطعه تا چه حد ميتواند خوب كار كند. ضريب تحرك تعيين ميكند كه بارها در يك قطعه چقدر سريع حركت ميكنند و اين نيز سرعت نهايي يك ترانزيستور را تعيين مينمايد.
لذا اهميت استفاده از نانولولهها و توليد ترانزيستورهاي نانولولهاي با داشتن ضريب تحرك برابر با 100 هزار سانتيمتر مربع بر ولت ثانيه در مقابل سيليكون با ضريب تحرك 1500 سانتيمتر مربع بر ولت ثانيه و اينديم آنتيمونيد (بالاترين ركورد بدست آمده تا به امروز) با ضريب تحرك 77 هزار سانتيمتر مربع بر ولت ثانيه بيش از پيش مشخص ميشود.
4-11-3حسگرها
حسگرها ابزارهايي هستند كه تحت شرايط خاص، از خود واكنشهاي پيشبيني شده و مورد انتظار نشان ميدهند. شايد دماسنج را بتوان جزء اولين حسگرهاي كه بشر ساخت به حساب آورد. با توجه به وجود آمدن وسايل الكترونيكي و تحولات عظيمي كه در چند دهه اخير و در خلال قرن بيستم به وقوع پيوسته است، امروزه نياز به ساخت حسگرهاي دقيقتر، كوچك تر و با قابليتهاي بيشتر احساس ميشود.
حسگرهايي كه امروزه مورد استفاده قرار ميگيرند، داراي حساسيت بالايي هستند به طوري كه به مقادير ناچيزي از هر گاز، گرما يا تشعشع حساسند. بالا بردن درجه حساسيت، بهره و دقت اين حسگرها نياز به كشف مواد و ابزارهاي جديد دارد. با آغاز عصر نانوفناوري، حسگرها نيز تغييرات شگرفي خواهند داشت. يكي از نامزدهاي ساخت حسگرها، نانولولهها خواهند بود. با نانولولهها ميتوان، هم حسگر شيميايي و هم حسگر مكانيكي ساخت. به خاطر كوچك و نانومتر بودن ابعاد اين حسگرها، دقت و واكنش آن ها بسيار زياد خواهد بود، به گونهاي كه حتي به چند اتم از يك گاز نيز واكنش نشان خواهند داد.
تحقيقات نشان ميدهد كه نانولولهها به نوع گازي كه جذب آن ها ميشود حساس مي باشند؛ همچنين ميدان الكتريكي خارجي، قدرت تغيير دادن ساختارهاي گروهي از نانولولهها را دارد؛ و نيزمعلوم شده است كه نانولولههاي كربني به تغيير شكل مكانيكي از قبيل كشش حساس هستند. گاف انرژي نانولولههاي كربني به طور چشمگيري در پاسخ به اين تغيير شكلها ميتواند تغيير كند. همچنين ميتوان با استفاده از مواد واسط، مانند پليمرها، در فاصله ميان نانولولههاي كربني و سيستم، نانولولههاي كربني را براي ساخت زيست حسگرها نيز توسعه داد. تحقيق در زمينه كاربرد نانولولهها در حسگرها در حال توسعه و پيشرفت است و مطمئناً در آيندهاي نه چندان دور شاهد بكارگيري آن ها در انواع مختلف حسگرها (مكانيكي، شيميايي، تشعشي، حرارتي و ..) خواهيم بود.
4-11-4نمايشگرهاي گسيل ميداني
بسياري از متخصصان بر اين باورند كه فناوري نمايشگرهاي با صفحه تخت امروزي از نظر هزينه، كيفيت و اندازه صفحه نمايش، براي مصارف خانگي مناسب نيستند. آن ها معتقدند كه با استفاده از نمايشگرهايي كه از نانولولههاي كربني به عنوان منبع انتشار استفاده ميكنند، مي توانند اين مشكلات را بر طرف كنند .
نانولولههاي كربني ميتوانند عنوان بهترين گسيل كننده ميداني را به خود اختصاص داده و ابزارهاي الكتروني با راندمان وكارايي بالاتري توليد كنند. خصوصيات منحصر به فرد اين نانولولهها، توليدكنندگان را قادر به توليد نوعي جديد از صفحه نمايشهاي تخت خواهد ساخت كه ضخامت آن ها به اندازه چند اينچ بوده و نسبت به فناوريهاي فعلي از قيمت مناسبتري برخوردار باشد. به علاوه كيفيت تصوير آن ها هم به مراتب بهتر خواهد بود.
در پديده گسيل ميداني، الكترونها با استفاده از ولتاژ اندك از فيلمهاي ضخيم داراي نانولوله به سمت صفحه نمايش پرتاب شده و باعث روشن شدن آن ميشوند. هر نقطه از اين فيلم، يك پرتاب كننده الكترون (تفنگ الكتروني) كوچك است كه تصوير را روي صفحه نمايش ايجاد ميكند. ولتاژ لازم براي نمايشگر گسيل ميداني از طريق صفحه نمايش صاف متكي بر نانولوله نسبت به آنچه به صورت سنتي در روش اشعه كاتدي استفاده ميشد، كمتر ميباشد و اين نانولولهها با ولتاژ كمتر، نور بيشتري توليد ميكنند.
4-11-5حافظههاي نانولولهاي
به دليل كوچكي بسيار زياد نانولولههاي كربني (كه در حد مولكولي است)، اگر هر نانولوله بتواند تنها يك بيت اطلاعات در خود جاي دهد، حافظههايي كه از اين نانولولهها ساخته ميشوند ميتوانند مقادير بسيار زيادي اطلاعات را در خود ذخيره نمايند. با در نظر داشتن اين مطلب، بسياري از محققان در حال كار بر روي ساخت حافظههاي نانولولهاي ميباشند؛ بنابراين رؤياي ساخت رايانههاي با سرعت بالا عملي خواهد شد.
4-11-6استحكامدهي كامپوزيتها
توزيع يكنواخت نانولولهها در زمينه كامپوزيت و بهبود چسبندگي نانولوله با زمينه در فرآوري اين نانوكامپوزيتها از موضوعات بسيار مهم است.
شيوه توزيع نانولولهها در زمينه پليمري از پارامترهاي مهم در استحكامدهي به كامپوزيت ميباشد. آنچه از تحقيقات بر ميآيد اين است كه استفاده از خواص عالي نانولولهها در نانوكامپوزيتها وابسته به استحكام پيوند فصل مشترك نانولوله و زمينه ميباشد. نكته ديگر آنكه خواص غير همسانگردي نانولولهها باعث ميشود كه در كسر حجمي كمي از نانولولهها رفتار جالبي در اين نانوكامپوزيتها پيدا شود.
از كاربردهاي ديگر نانو لوله ها مي توان به امكان ذخيره هيدروژن در پيلهاي سوختي، افزايش ظرفيت باتريها و پيلهاي سوختي، افزايش راندمان پيلهاي خورشيدي، جليقههاي ضدگلوله سبك و مستحكم، كابلهاي ابررسانا يا رساناي سبك، رنگهاي رسانا، روكشهاي كامپوزيتي ضد رادار، حصار حفاظتي الكترومغناطيسي در تجهيزات الكترونيكي، پليمرهاي رسانا، فيبرهاي بسيار مقاوم، پارچه هاي با قابليت ذخيره انرژي الكتريكي جهت راه اندازي ادوات الكتريكي، ماهيچههاي مصنوعي با قدرت توليد نيروي 100 مرتبه بيشتر از ماهيچههاي طبيعي، صنايع نساجي، افزايش كارايي سراميكها، مواد پلاستيكي مستحكم، تشخيص گلوكز، محلولي براي اتصال دروني تراشههاي بسيار سريع، مدارهاي منطقي و پردازندههاي فوق سريع، كمك به درمان آسيبديدگي مغز، دارورساني به سلولهاي آسيب ديده، از بين بردن تومورهاي سرطاني، تجزيه هيدروژن، ژندرماني، تصويربرداري، Spm، Fem، محافظ Emt، حسگرهاي شيميايي ، Set و Led، پيلهاي خورشيدي و نهايتاً Lsi اشاره كرد. البته در چند مورد اخير بيشتر از نوع تك جداره آن استفاده ميشود.
لذا اين فناوري با اين گستره كاربردها ميتواند در آيندهاي نه چندان دور بازار بزرگي را به خود اختصاص داده و زندگي بشر را تحت تأثير خود قرار دهد.
در پايان در پاسخ به اين سؤال كه چرا دانشمندان به فناوري نانو روي آورده وميخواهند بر تمام مشكلات جابهجايي اتم فائق آيند ميتوان گفت که تغييرات در مقياس نانومتري بر خواص موج گونه الكترونهاي درون مواد اثر ميگذارد لذا با جابه جا كردن اتمها در اين مقياس ميتوان خواص اصلي مواد (به عنوان مثال دماي ذوب، اثرات مغناطيسي، ظرفيت بار) را بدون تغيير كلي تركيب شيميايي مواد دگرگون ساخت. بنابر اين پيشبيني رفتار و خواص در محدودهاي از ابعاد براي نانوتكنولوژيستها حياتي است.
4-12نانوتكنولوژي در صنايع نيمههادي
صنايع نيمههادي در سير تكامل خود در حال رسيدن به نقطهاي است كه توانايي آن براي توليد نقاط كوچكتر با مشكلاتي جدي همچون اثرات كوانتومي و نوسانات سطوح اتمي روبرو خواهد شد.
مشكلات ديگر در راه پيشرفت CMOS عبارتند از مصرف بالا، اتلاف حرارت و هزينه بسيار بالاي ساخت. اين مسائل در آينده مانعي سخت براي توليد نيمههاديهاي كارآمد خواهد بود. به گفته NanoMarkets، نانوتكنولوژي به ادامه پيشرفت و توليد CMOS كمك خواهد كرد و همچنين فناوريهاي جديد را قادر خواهد ساخت تا گوي سبقت را در جلب رضايت بازار از CMOS بربايند.غولهاي بزرگ صنعتي همچون فرياسكيل ، آيبياِم، اينفينئون و اينتل پشتوانة مهمي براي نانوحافظهها به حساب ميآيند.
يك گزارش جديد از NanoMarkets بيانگر اين مطلب است كه همانطوركه روشهاي كنوني ليتوگرافي به پايان راه خود رسيدهاند، ابزارهايي كه براي توسعه، توليد و آزمايش CMOS به كار ميروند، نيز بايد بر پاية نانوتكنولوژي طرحريزي گردند. پرتوافكن مستقيم الكترونيكي كه در توليد ASIC به كار ميرود، نمونههاي از ابزاري است كه به كمك نانوتكنولوژي بوجود آمدهاست. اما نانوماركتز معتقد است كه كاربرد واقعي نانوتكنولوژي در توليد محصولات جديد، با توجه به خصوصيات مواد مقياس نانو ميباشد. بخشهايي از صنعت نيمههادي كه بيشترين تأثير نانوتكنولوژي در آنها ديده ميشود خارج از مقوله CMOS قرار دارند. به گفته نانوماركتز اين موضوع در موارد زير به وضوح ديده ميشود.
حافظه غيرفرار: حافظه غيرفرار يكي از عوامل تقويت محاسبات سيار است. اما با توجه به اينكه حجم و سرعت فناوري Flash محدود ميباشد، حافظههاي جديد كه در طراحي آنها از نانوتكنولوژي بهره گرفته شده است، كارايي بهتري را از خود نشان دادهاند. FRAM و MRAM نمونههايي از اين نوع حافظهها هستند
1-12-4الكترونيك پليمري:
سوني، زيراكس و سايرين آمادهاند كه محصولات الكترونيك لايه نازك را وارد بازار كنند. الكترونيك پليمري، برخلاف CMOS، از خصوصيات حرارتي بسيار خوبي برخوردار است و هزينه توليد در حجم كم را پايين ميآورد. اين خصوصيات امكان توليد محصولات جديدي را به وجود ميآورد. در سال 2006 نمايشگرهاي بزرگ رولي و همچنين برچسبهاي RFID با قيمت پايين توليد خواهد شد كه امكان استفاده از آنها براي اجناس يكبارمصرف فراهم خواهد شد
نانوحسگر: نانوحسگرها نسبت به رقباي خود از آستانه تشخيص بسيار پايينتري برخوردارند. آنها قادرند در زمينه كشف امراض بيولوژيك نقش مهمي را ايفا كنند. به گونهاي كه در مورد اعلام وجود سرطان، از سرعت بسيار زيادي برخوردارند
گزارش NanoMarkets بيانگر اين مطلب است كه نانوتكنولوژي بهزودي ميتواند در مديريت حرارتي و اتصالات داخلي پرسرعت، به ميزان قابلتوجهي كمك نمايد. در زمينه اتصالات داخلي پرسرعت ميتوان از نانولولهها استفاده نمود زيرا توانايي آنها در انتقال جريان از مس خيلي بيشتر است و ميتوان آنها را به روشهاي قابل انطباق با CMOSها رشد داد (اينفينئون در سال 2002 اين قابليت را نشان داد). از نانولولهها ميتوان خنككنندههاي بسيار خوبي براي رفع مشكلات حرارتي ساخت (همانند قطعاتي كه اينتل از سال 2002 به بعد به كارشان گرفت) و يا ميتوان با ايجاد جرقه بين آنها جرياني از هواي خنك توليد نمود
از اين گزارش چنين نتيجه گرفته ميشود كه فرصتهاي قابل توجهي در نانوالكترونيك وجود دارد. بهگونهاي
كه در سال 2006 نانوحافظهها به تنهايي 1/3 ميليارد دلار سودآوري خواهند داشت. همانگونه كه در بالا توضيح دادهشد، اين امر هماكنون در قالب روشهاي جديد براي تكميل CMOSها آغاز شدهاست. اين گزارش نشان ميدهد كه سازندگان نيمههاديها از هماكنون بايد به فكر طرح ريزي براي بهكارگرفتن نانوتكنولوژي در توليدات خود باشند. در غير اينصورت بايد از دست دادن توليدات بزرگ آينده را بپذيرند، كه البته پذيرفتن اين ريسك بسيار دور از ذهن بهنظر ميرسد
4-13کاربردها و چالشهاي زيستي نانولولههاي کربني
يکي از پرکاربردترين ساختارهاي مورد بحث در فناوري نانو که به عرصه علوم زيستي وارد شدهاست، نانولولههاي کربني هستند. اين نانوساختارها، بهجهت بهرهمندي از ويژگيهاي منحصربهفرد فيزيکي و شيميايي بالقوه، از تواناييهايي براي استفاده در حسگرهاي زيستي، حمل و نقل مولکولي، جستجوي الکتروشيميايي نمونههاي بيولوژيک، داربست بافتي، فرستنده سيگنال به سلولها و روشهاي تشخيصي برخوردارند. اما پيش از بهکارگيري نانولولههاي کربني در موجودات زنده، بايد از سازگاري اين ساختارها در بافت زنده مطمئن شد. به اين منظور پژوهشهاي زيادي صورت گرفتهاست که تا حدودي سميت نانولولههاي کربني و عوامل مؤثر بر آن مثل دوز، ساختمان، دنبالههاي شيميايي، سطح فعال و خلوص را مشخص نمودهاست. دانشمندان تاکنون توانستهاند از نانولولههاي کربني در حسگرهاي پروتئيني، ناقلهاي پروتئيني، ميکروسکوپها، داربست بافتي سلول استخواني و عصبي، کانالهاي مولکولي و فرستنده سيگنال به سلولهاي عصبي استفاده کنند.
به نظر ميرسد اولين رشتههاي در مقياس نانو در سال 1970 ميلادي توسط Marinobu Endo از دانشگاه اورلئان فرانسه تهيه شد. اين رشتهها هفت نانومتر قطر داشتند و با روش رشد توسط بخار تهيه شده بودند . با اين حال امروزه نام ايجيما از آزمايشگاه NEC در تسوکوبا بهعنوان اولين کسي که توسط HR-TEM در سال 1991 موفق به مشاهده نانولولهها شد، در صدر محققان اين رشته باقي ماندهاست. در همين زمان و به طور مستقل در مسکو نيز دانشمندان موفق به کشف ريزلولههايي شده بودند که البته نسبت طول به قطر آن کمتر از يافتة ايجيما بود. روسها نام اين ماده را Barrelense گذاردند آنچه ايجيما موفق به مشاهده آن شده بود نانولوله چند لايه بود و وي به فاصله دو سال موفق به مشاهده نانولوله تکلايه نيز گشت. گروه رايس در 1996 موفق به ساخت دستههاي موازي از نانولوله تکلايه شدند که راه را براي تحقيقات بيشتر روي فيزيک کوانتوم تک بعدي باز کرد .
ساختار
نانولوله بر اساس ساختمان گرافيت بنا ميشوند. گرافيت از لايههاي مجزايي متشکل از اتمهاي کربن تشکيل شدهاست که بهصورت واحدهايي ششضلعي که در شش رأس آن اتم کربن قرار دارد آرايش يافتهاند. قطر نانولوله بين يک تا دو نانومتر و طول آن گاه تا چند ميکرومتر نيز ميرسد. انتهاي هر دو سوي نانولولهها ميتواند با نيمهاي از يک فولرين مسدود باشد يا نباشد .و لذا ميتواند در انتهاي خود علاوه بر اجزاي ششضلعي داراي اجزاي پنجضلعي نيز باشد.اما مهمترين ويژگي که در تعيين خصوصيات نانولولهها نقش بازي ميکند، با عنوان Chirality يا پيچش شناخته ميشود .
از ديگر ويژگيهاي ساختاري نانولولهها حضور آنها به دو فرم نانولوله چند لايه با نام اختصاري MWNT و نانولولههاي تکلايه با نام اختصاري SWNT است؛ هر يك از اين انواع داراي کاربردهاي متفاوتي هستند.
روشهاي توليد
روشهاي توليد نانولولههاي کربني بهاختصار شامل موارد زير است:
• تبخير يا سايش ليزري (Laser Vaporization/ablation)؛
• رسوبدهي شيميايي بخار به کمک حرارت (CVD)؛
• رسوبدهي شيميايي بخار به کمک پلاسما (PECVD)؛
• رشد فاز بخار؛
• الکتروليز؛
• سنتز شعله.
خصوصيات فيزيکي و شيميايي
نانولولهها عليرغم برخورداري از قطر بسيار کم، استحکام کششي بالايي در حدود صد گيگاپاسکال دارند. از ديگر خصوصيات نانولولهها وجود پيوندهاي واندروالس بين اتمها(و لذا توانايي بسيار پايين آنها براي چسبيدن به يکديگر)، خواص الکتريکي منحصر به فرد (نانولوله فلزي و نيمه هادي) ، رسانايي تنها در جهت طولي ، رسانايي حرارتي و خاصيت نشر ميداني است. خاصيت نشر ميداني در ساختارهايي که داراي نسبت طول به قطر بالا (بزرگتر از هزار) ، داراي رأس اتمي تيز، ثبات بالاي حرارتي و شيميايي و هدايت بالاي الکتريکي و گرمايي باشند، ديده ميشود .
ويژگيهاي زيستي نانولولههاي کربني
با وجود خصوصيات متنوع نانولولهها، دور از ذهن نيست که کاربردهاي متنوعي نيز داشته باشند. در يک تقسيمبندي ساده ميتوان برهمکنشهاي زيستي نانولولهها را از دو بعد درونسلولي و برونسلولي مورد بررسي قرار داد. به طور کلي مهمترين عناوين کاربردهاي نانولولهها از ديد بيولوژيک عبارتند از:
• حسگرهاي زيستي؛
• حمل و نقل ملکولي؛
• جستجوي الکتروشيميايي نمونههاي بيولوژيک؛
• داربست بافتي؛
• فرستنده سيگنال به سلولها؛
• روشهاي تشخيصي.
اما يکي از مهمترين مباحث در راه استفاده از کاراييهاي نانولوله در بافت زنده، سازگاري زيستي آن است. لذا ابتدا مطالعات صورت گرفته در اين زمينه را مرور ميكنيم.
سازگاري زيستي
جلب نظر دانشمندان به سازگاري زيستي نانولولهها و اثرات مضر احتمالي آنها بر سلولها، به اين واقعيت برميگردد که در سالهاي اخير با افزايش روز افزون کاربردهاي نانولولهها در صنعت و حضور بيشتر آنها در محيط، ارتباط معناداري بين آنها و بيماريهايي از جمله بيماريهاي تنفسي و پوستي پيدا شدهاست. اين امر مراکز علمي و تحقيقاتي را بر آن داشته است تا به بررسي اساسي اين تأثيرات، يعني تأثير نانولوله بر سلول بپردازند. عليرغم مطالعاتي که در ابتدا نشان ميداد که نانولوله و همخانوادههاي آن تأثير چنداني بر مورفولوژي، رشد و تکثير سلولي ندارند ، امروزه مشخص شدهاست که شاخصهايي چون ابعاد فيزيکي، مساحت، دوز، نسبت طول به قطر، زمان، خلوص و وجود عوامل شيميايي متصل به سطح، هر يک به نوبه خود در خاصيت سيتوتوکسيتي نانولوله مؤثرند. هر يک از مطالعات صورت گرفته روي يکي از متغيرهاي مذکور تمرکز بيشتري دارند، اما به نظر ميرسد که دوز، خلوص و حضور دنبالههاي شيميايي متصل به سطح از موارد مهمتر باشند.
مطالعات نشان دادهاند که آستانه اثر کشندگي نانولوله براي نانولولههاي چند ديواره و تکديواره ، حدود 06/3 ميکروگرم در ميليليتر است که اين رقم در برابر C60 )فولرين) که تا 226 ميکروگرم در ميليليتر نيز اثر کشندگي براي سلول ندارد، رقمي قابل توجه است .آخرين و مهمترين مقاله منتشر شده در اين زمينه توسط انجمن شيمي آمريکا، در مقايسهاي بين سيتوکسيتي MWCNT، SWCNT، کوارتز و C60، بهترتيب توان کشندگي اين مواد براي سلول را به اين شکل بيان ميکند:
C60 < کوارتز < SWCNT > MWCNT
نکته جالب آن است که اگر چه با افزايش دوز نانولوله در محيط کشت، اثر کشندگي آن نيز افزايش مييابد، اما اين ارتباط، خطي و منظم نيست [15]. نکته ديگر در مورد اثر دوز اينکه نانولوله در دوزهاي پايين اثري عکس اثرات آن در دوزهاي بالا دارد.
بررسيها نشان ميدهد که نانولولة خالص داراي اثرات سمي بيشتري نسبت به نوع ناخالص آن است. اما مهمتر از خلوص، اثر عوامل شيميايي بر روي سطح نانولوله است که موجب کاهش اثرات سمي آن ميشود. اضافه نمودن عوامل شيميايي بر روي سطحِ نانولوله را فعال سازي (Functionalization) ميگويند که به نوبه خود موجب تسهيل بهکارگيري نانولوله در صنايع ميگردد.
برخي از مطالعات به نحوة اثر نانولوله در سلول و علت مستقيم مرگ سلولي ناشي از آن اختصاص دارند. به طور کلي سلولها در مواجهه با نانولوله، پاسخهاي گسترده و بعضاً متناقضي از خود نشان ميدهند. اين پاسخهاي سلولي عبارتند از: فعالسازي ژنهاي مؤثر در حمل و نقل سلولي، متابوليسم، تنظيم سيکل سلولي و رشد سلولي پاسخهاي استرسي و اکسيداتيو، توليد و ترشح پروتئين از سلول، توقف رشد سلولي و در نهايت آپوپتوز و نکروز.
طبق مطالعات صورت گرفته، نانولولهها در دوزهاي پايينتر موجب افزايش رشد و متابوليسم سلولي و در دوزهاي بالاتر موجب واکنشهاي التهابي و پاسخهاي ايمني سلولي، مشابه وضعيتي که در برابر تهاجم يک عفونت وريدي از خود نشان ميدهد، ميشوند. در واقع مرگ سلولها در مواجهه با نانولولهها مشابه ديگر موارد مرگ سلولي، ناشي از تشکيل راديکالهاي آزاد و عوارض ناشي از آن، تخليه مواد آنتياکسيدان و up-regulation برخي از ژنها و down-regulation برخي از ژنهاي ديگر است .
اثرات نانولوله بر روي بيان ژني که تا به حال کشف شدهاست عبارت است از: up-regulation بيان ژنهاي مؤثر در سيکل سلولي مثل P38, CdC37, CdC42, hrk, P57, bax, P16 و Down-regulation بيان ژنهاي مؤثر در سيکل سلول مثل Cdk2 و Cdk4، Cdk6 و Cyclin D3 و نيز down-regulation بيان ژنهاي مرتبط با سيگنالهاي سلولي مثل pcdha9, ttk, jak1, mad2 و erk. همچنين موجب القاي down-regulation بيان پروتئينهاي دخيل در اتصالات سلولي مانند لامينين، فيبرونکتين، کادهرين و FAR و کلاژن نوع چهار ميشوند.
از اين ميان دانشمندان مهمترين تأثير نانولولهها را در سيکل ميتوز در مرحله G1 ميدانند و توقف سلول در فاز G1 را عامل اصلي آپوپتوز قلمداد ميکنند.
. نانولولههاي کربني: ابزارهاي قدرتمند زيستي
چنانچه عنوان شد، با در نظر گرفته خطرات احتمالي نانولولهها براي سلول و بافت، اين ساختارهاي نانويي بالقوه از کاربردهاي فراواني در موجودات زنده برخوردارند. اگرچه ترس از عدم سازگاري زيستي موجب کند شدن روند تحقيقات در اين زمينه شدهاست، با اين حال تاکنون دانشمندان به نتايج قابل قبولي نيز دست يافتهاند که در ادامه به آنها اشاره ميشود.
حسگرهاي زيستي
هرگونه تغييري در ساختمان و اجزاي نانولولهها موجب تغيير در قدرت هدايت الکتريکي آنها خواهد شد. دانشمندان دريافتهاند که فعالسازي نيز متناسب با خصوصيات مولکول پيوند شده، موجب تغييراتي در هدايت الکتريکي و تابش نور از نانولوله ميشود که منحصر به همان مولکول است. تاکنون مطالعاتي روي پروتئينها، کربوهيدارتها و آنتيباديهاي مختلف صورت گرفتهاست که همگي تأييدي بر اين فرضيه بودهاند. لذا متصور خواهد بود که با حضور هر نوع مولکول در محيط حاوي نانولوله و اتصال به آن ميتوان فرکانس الکتريکي يا طول نوراني متفاوتي را ثبت کرد و به حضور آن ماده در محيط پي برد.
حمل و نقل ملکولي
تاکنون مطالعاتي روي توانايي نانولولهها در جابهجا نمودن مولکولها صورت گرفتهاست. اين بررسيها غالباً به دو دسته تقسيم ميشوند: مطالعاتي که به بررسي عبور مولکولها از درون نانولوله و جاگذاري مولکولها درون آنها اختصاص دارند و مطالعاتي که بر پايه اتصال مولکولها به سطح نانولوله و انتقال از اين طريق بنا شدهاند.در نوع اول دانشمندان موفق به مشاهده عبور مولکول آب، +H، برخي از يونها و بعضاً پليمرها از درون نانولوله شدهاند، آنها با جايگذاري داروهاي ضد سرطان (مثل سيس پلاتين) درون نانولولهها موفق به انتقال آنها به اطراف سلول و آزادسازي آهستة آنها از درون نانولوله شدهاند. در نوع ديگر عموماً نقل و انتقال پروتئينها توسط نانولولهها بررسي شدهاست. اين مطالعات نشان ميدهند که با فعال سازي نانولوله توسط بنيان اسيدي ميتوان قابليت اتصال اين مواد به پروتئينها را افزايش داد و به اين طريق انتقال پروتئينها به درون سلول را تسهيل کرد. البته اين توانايي نانولولهها به اندازه پروتئين نيز بستگي دارد و در اندازههاي بزرگتر اين توانايي از نانولوله صلب ميشود. در همين رابطه ميتوان توانايي نانولوله را براي انتقال ژنها به درون سلول نيز ذکر کرد. که البته مطالعات در اين زمينه همچنان ادامه دارد. چنانچه بتوان از نانولوله به عنوان ناقل ژني استفاده کرد، ميتوان آينده درخشاني را براي ژندرماني و روشهاي مشابه متصور بود.
داربست بافتي
اخيراً توجه دانشمندان به اين قابليت نانولولهها جلب شدهاست که همانند داربستهاي طبيعي بافتي محتوي کلاژن، ميتوانند به عنوان داربست (Scaffold) براي رشد سلولهاي روي آنها مورد استفاده قرار بگيرند. احتمالاً ايده اوليه از آنجا منشأ ميگيرد که نانولولهها هنگام توليد به صورت رشتههايي درهم آرايش مييابند که به آن فرم ماکاروني اطلاق ميشود. اين مشابه وضعيت کلاژنها در مايع خارج سلولي است. نام ديگر اين آرايش bucky paper است
دانشمندان دريافتهاند که SWCNTهاي بافته نشده (non woven) داراي خاصيت داربستي بيشتري نسبت به ديگر انواع هستند. در اين حال قابليت تکثير و چسبندگي سلولي نيز افزايش چشمگيري دارد .مهمترين دستاورد محققان در اين زمينه، کشت استئوبلاستها روي نانولولههاست که بهتازگي در مقالهاي توسط محققان دانشگاه کاليفرنيا در سال 2006 منتشر شدهاست و توجهات زيادي را به خود جلب کردهاست. اين يافته راه را براي به کارگيري نانولولهها در ترميم آسيبهاي سلولي باز ميکند. بيش از اين نيز اتصالات محکم استئوبلاستها به داربست نانولولهاي توسط filopodiaهاي شکلگرفته در حين کشت به اثبات رسيده بود. با اين حال مطالعاتي نيز نشان ميدهند که اتصالات بين سلول و داربست نانولوله سست بود و سلولها قادر به نفوذ به داربست نيستند.
يافته ديگري که توسط دانشگاه کاليفرنيا اعلام شدهاست، احتمال بهكارگيري نانولولهها در ترميم ضايعات نخاعي است. در اين حال حضور نانولولهها در محيط موجب هدايت رشد آکسوني ميشود
ديگر کاربردها
ديگر کاربردهايي که امروزه مطالعاتي بر روي آنها در حال انجام است عبارتند از: الف) فرستادن سيگنال به سلولهاي عصبي که در آن همزمان با ايجاد داربست مناسب براي رشد سلولهاي عصبي (توسط فعالسازي مناسب نانولولهها) ميتوان سيگنالهاي الکتريکي را به سلول عصبي فرستاد؛
ب) روشهاي تشخيصي زيستي که اولين مرحله اين کاربرد بر روي مالاريا و تشخيص گلبولهاي قرمز آلوده به اين تک ياخته Plasmodium falciparum صورت گرفتهاست و در حقيقت ميکروسکوپ AFM بر اين پايه عمل ميکند؛ ج) جستجوي الکتروشيميايي که در واقع از خاصيت قطبيتپذيري نانولولهها استفاده و آن را به ابزاري تحت عنوان «ion-nanotube terahertz osillator» تبديل کردهاست. در اين حالت يون مورد نظر (مثلاً +K) با گيرافتادن در دالان نانولوله با فرکانس بالا شروع به حرکت به دو سوي نانولوله ميکند. حاصل اين فرايند ايجاد جريان الکتريکي متناوب با فرکانس بالا خواهد بود که از خارج قابل اندازهگيري است.
جمع بندي
نانولولههاي کربني به جهت قدرت الاستيسيتة بالا و در عين حال استحکام فوق العاده، به عنوان داربست سلولي براي رشد سلولهاي استخواني و عصبي مورد استفاده قرار گرفتهاند. به علاوه در عين حال که سلولها روي شبکهاي تور مانند از اين مواد شروع به رشد و تکثير ميکنند، دانشمندان توانستهاند از قابليت هدايت ويژه الکتريکي نانولولههاي کربني استفاده و از آنها به عنوان راهي براي فرستادن پيام به سلولها استفاده کنند. اين يافتهها تداعيکنندة نياز مبرم علم پزشکي و مخصوصاً شاخههاي جراحي پلاستيک و پيوند اعضا، به رشد و تکثير و پرورش سلولهاي مورد نظر در خارج از بدن و سپس انتقال آنها به بدن است. در اين فرايند کاستن از رد شدن بافت پيوندي توسط دستگاه ايمني بدن از جايگاه ويژهاي برخوردار است که تحقيقات چند سال اخير روي سازگاري زيستي نانولولههاي کربني آن را نشان دادهاست. با تغييراتي در ساختار و ترکيبات اين مواد ميتوان آنها را به ساختمانهايي سازگار با دستگاه ايمني بدن تبديل کرد. بهعلاوه اتصال محکم سلولها به اين ساختارها مشکل ديگر پيوند اعضا، يعني سستي سلولها پس از پيوند را مرتفع خواهد ساخت.
همچنين قابليت ذخيرهسازي مولکولها در داخل نانولولههاي کربني، درهاي تازهاي را به روي حمل و نقل مواد حاجب و داروها در داخل بدن گشودهاست؛ چنانچه هر دوي اين کاربردها در خارج از بدن انسان به اثبات رسيدهاند. مشابه اين کاربرد، توانايي نانولولههاي کربني فعالسازي شده براي اتصال به پروتئينها و انتقال آنها به داخل سلول است که به تازگي نظر دانشمندان را به خود جلب نمودهاست.
از مهمترين و اولين کاربردهاي نانولولههاي کربني در محيطهاي زنده، توانايي آنها براي اتصال به مولکولهاي آلي مختلف و امکان جستجوي آن ماده بر اساس تغييرات هدايت الکتريکي نانولوله بودهاست. اين کاربرد، از برجستهترين تقابلهاي علم الکترونيک و بيولوژي در بهرهبرداري از فناورينانو بودهاست.
با توجه به آنچه گذشت و طبق اطلاعات موجود از امکانات حال حاضر کشورمان، به نظر ميرسد که با برقراري ارتباط بيشتر بين محققان علوم زيستي و علوم مهندسي، هيچيک از اين کاربردها هم اکنون دست نايافتني نيستند. در حقيقت ذکر چنين کابردهايي از نانولولههاي کربني که تنها يک نانوذره از ميان هزاران نانوذرة موجود است، هدفي به جز ايجاد انگيزه بيشتر براي ورود مهندسان علوم الکترونيک، مواد و شيمي به حوزه علوم زيستي و بالعکس آشنايي بيشتر محققان علوم زيستي با بعد فني و مهندسي فناوري نانو نخواهد داشت.
4-14كاربردهاي نانوتكنولوژي در كشاورزي و علوم دامي
4-14-1کاربرد نانو تکنولوژی در کشاورزی:
نانوتكنولوژي به عنوان يك فناوري قدرتمند، توانايي ايجاد تحول در سيستم كشاورزي و صنايع غذايي سر تاسر دنيا را دارد. نمونه هايي از كاربردها و پتانسيلهاي بالقوه نانوتكنولوژي در كشاورزي و صنايع غذايي، شامل سيستم هاي جديد آزاد كننده دارو براي درمان بيماريها، ابزارهاي جديد بيولوژي سلولي و مولكولي، امنيت زيستي و تضمين سلامتي محصولات كشاورزي و غذايي و توليد مواد جديد مورد استفاده براي شناسايي عوامل بيماريزا و حمايت از محيط زيست مي باشد. تحقيقات اخير، امكان استفاده از نانوشلها و نانوتيوپها را در سيستمهاي جانوري براي تخريب سلولهاي هدف، به روشني ثابت نموده است. امروزه از نانوپارتيكل ها كه اجرام بسيار كوچكتر از حد ميكرون هستند، براي رها سازي داروها و يا ژنها به داخل سلولها استفاده مي كنند و مورد انتظار است كه اين تكنولوژيها در 10 الي 15 سال آتي مورد بهره برداري كامل قرار گيرد. با روند رو به رشد تحقيقات اخير، اين پيش بيني منطقي است كه در دهه آينده، صنعت نانوتكنولوژي با توسعه بي نظير خود، منجر به ايجاد انقلاب عظيم در بخش پزشكي و بهداشت و همچنين توليدات دارويي دام و آبزيان گردد.كلمات كليدي: سيستمهاي آزاد كننده دارو، نانوپارتيكل، نانوتكنولوژي، شناسايي اجرام بيماري زا
مقدمه:نانوتكنولوژي به عنوان يك فناوري قدرتمند نوين، توانايي ايجاد انقلاب و تحولات عظيم را در سيستم تامين مواد غذايي و كشاورزي ايالت متحده آمريكا و در گستره جهاني دارد. نانوتكنولوژي قادر است كه ابزارهاي جديدي را براي استفاده در بيولوژي مولكولي و سلولي و همچنين توليد مواد جديدي، براي شناسايي اجرام بيماري زا معرفي نمايد و بنابراين چندين ديدگاه مختلف در نانوتكنولوژي وجود دارد كه مي تواند در علوم كشاورزي و صنايع غذايي، كاربرد داشته باشد. به عنوان مثال امنيت زيستي توليدات كشاورزي و مواد غذايي، سيستمهاي آزاد كننده دارو بر عليه بيماريهاي شايع، حفظ سلامتي و حمايت از محيط زيست از جمله كاربردهاي اين علم مي باشد.علم نانوتكنولوژي چيست؟ انجمن ملي نوبنياد نانوتكنولوژي كه يك نهاد دولتي در كشور امريكا مي باشد ، واژه نانوتكنولوژي را چنين توصيف مي كند: "تحقيق و توسعه هدفمند، براي درك و دستكاري و اندازه گيريها مورد نياز در سطح موادي با ابعاد در حد اتم"، مولكول و سوپرمولكولها را نانوتكنولوژي مي گويند. اين مفهوم با واحدهايي از يك تا صد نانومتر، همبستگي دارد. دراين مقياس خصوصيات فيزيكي، بيولوژيكي و شيميايي مواد تفاوت اساسي با يكديگر دارند و غالبا اعمال غير قابل انتظار از آنها مشاهده مي شود. در سيستم كشاورزي امروزي، اگردامي مبتلا به يك بيماري خاص شود، مي توان چند روز و حتي چند هفته يا چند ماه قبل علائم نامحسوس بيماري را شناسايي كنند و قبل از انتشار و مرگ و مير كل گله، دامدار را براي اخذ تصميمات مديريتي و پيشگيري كننده آگاه كند و بنابراين مي توان نسبت به مقابله با آن بيماري اقدام نمايد. نانوتكنولوژي به موضوعاتي در مقياس هم اندازه با ويروسها و ساير عوامل بيماري زا مي پردازد و بنابراين پتانسيل بالايي را براي شناسايي و ريشه كني عوامل بيماري زا دارد. نانوتكنولوژي امكان استفاده از سيستمهاي آزاد كننده داروئي را كه بتواند به طور طولاني مدت فعال باقي بماند، فراهم مي كند. به عنوان مثال استفاده از سيستمهاي آزاد كننده دارو، مي توان به ايمپلنتهاي ابداع شده مينياتوري در حيوان اشاره كرد كه نمونه هاي بزاقي را به طور مستمر كنترل مي كنند و قبل از بروز علائم باليني و تب، از طريق سيستمهاي هشدار دهنده وسنسورهاي ويژه، مي تواند احتمال وقوع بيماري را مشخص و سيستم خاص ازاد كننده دارو معيني را براي درمان موثر توصيه كنند. طراحي سيستمهاي آزاد كننده مواد دارويي، يك آرزوي و روياي هميشگي محققان براي سيستمهاي رها كننده داروها، مواد مغذي و پروبيوتيكها بوده و مي باشد. نانوتكنولوژي به عنوان يك فناوري قدرتمند به ما اجازه مي دهد كه نگرشي در سطح مولكولي و اتمي داشته و قادر باشيم كه ساختارهايي در ابعاد نانومتر را بيافرينيم. براي تعيين و شناسايي بسيار جزئي آلودگيهاي شيميايي، ويروسي يا باكتريايي در كشاورزي و صنايع غذايي معمولا از روشهاي بيولوژيكي، فيزيكي و شيميايي استفاده مي گيرد. در روشهاي اخير نانوتكنولوژي براي استفاده توام اين روشها، يك سنسور در مقياس نانو طراحي كرده اند در اين سيستم جديد، مواد حاصل از متابوليسم و رشد باكتريها با اين سنسورها تعيين مي گردد. سطوح انتخابي بيولوژيكي، محيطي هايي هستند كه عمده واكنشهاي و فعل و انفعالات بيولوژيكي و شيميايي در آن محيط انجام مي شود. چنين سطوحي همچنين توانايي افزايش يا كاهش قدرت اتصال ارگانيزمها و ملكولهاي ويژه را دارد. از جنبه هاي كاريردي استفاده از اين سطوح، طراحي سنسورها، كاتاليستها، و توانايي جداسازي يا خالص سازي مخلوطهاي بيومولكولها مي باشد. نانومولكولها موادي هستند كه اخيرا از طريق نانوتكنولوژي به دست آمده اند و يا در طبيعت موجودند و بوسيله اين ساختارها، امكان دستكاريهاي درسطح نانو و تنظيم و كاتاليز واكنشهاي شيميايي وجود دارد. نانو مواد از اجزاي با سايز بسيار ريز تشكيل شده اند و اجزا تشكيل دهنده چنين ساختارهايي بر خواص مواد حاصل در سطح ماكرو تاثير مي گذارد. ساختارهاي كروي توخالي (buckey balls ) كه با نام ديگرفولرین هم شناخته شده اند، مجموعه از اتمهاي كربن متحدالشكل به صورت كروي هستند كه در چنين ساختاري هر اتم كربن به سه اتم كربن مجاورش متصل شده. دانشمندان اكنون به خوبي مي دانند كه چگونه يك چنين ساختاري را به وجود آورند و كاربردهاي بيولوژيكي آن امروزه كاملا شناخته شده است. از جمله كاربردهاي چنين ساختارهايي براي رها سازي دارو يا مواد راديواكتيو در محلهاي مبتلا به عوامل بيماريزا مي باشد. ايده استفاده از60 اتم كربن به جاي 80 اتم، ساختارهاي توخالي را براي آزاد سازي دارو فراهم مي كند. هدف از اين كار در نهايت رسيدن به گروهاي قابل انحلال پپتيدها در آب مي باشد كه نتيجتا اين مولكولها به جريان خون راه پيدا مي كنند. نانوتيوپها ساختارهاي توخالي ديگري هستند كه از دو طرف باز شده اند و گروههاي اتمي ديگري به آنها اضافه شده اند و يك ساختار شش گوشه را تشكيل مي دهند. نانوتيوپها مي توانند به عنوان يك ورقه گرافيت در نظر گرفته شوند كه به دور يك لوله پيچيده شده اند.كاربرد پلي مرهاي سنتزي در داروسازي پيشرفتهاي چشمگيري داشته است. سبكي، نداشتن آثار جانبي و امكان شكل دهي پلي مرها، كاربرد آنها را در زمينه پزشكي و دامپزشكي افزايش داده است. در روشهاي دارورساني مدرن، فرآورده شكل دارويي موثر خود را با يك روند مشخص شده قبلي براي مدت زمان معلوم بطور سيستماتيك به عضو هدف آزاد مي كند. پليمرها نه تنها به عنوان منابع ذخيره دارو و غشا و ماتريكس هاي نگهدارنده عمل مي كنند بلكه مي توانند سرعت انحلال آزاد سازي و تعادل دفع و جذب آزاد را در بدن كنترل كنند.دندريمر(پلي مر) يك طبقه جديد از مولكولهاي سه بعدي مصنوعي هستند كه از مسير و راه نانوسنتزي به دست آمده اند كه اين دندريمرها از تواليها و شاخه اي تكراري حاصل آمده اند. ساختار چنين تركبيباتي از يك درجه بالاي تقارن برخوردار است.نقاط كوانتومي، كريستالهايي در مقياس نانومتري هستند كه اساسا در اواسط 1980 براي كاربردهاي اپتوالكترونيك به كاربرده شدند. آنها در طي سنتز شيميايي در مقياس نانو ايجاد مي شوند و از صدها يا هزاران اتم در نهايت يك ماده نيمه هادي معدني تشكيل شده اند كه اين ماده به اتمها خاصيت فلورنس مي دهد. وقتي يك نقطه كوانتومي با يك پرتو نور برانگيخته مي شود آنها دوباره نور را منتشر مي كنند. ميزان يك طيف نشري متقارن باريك مستقيم به اندازه كريستال بستگي دارد. اين بدان معني است كه اجرام كوانتومي مي توانند به خوبي براي انتشار نور در طول موجهاي مختلف طراحي شوند. نانوشلها يك نوع جديد از نانوذرات كه از هسته دي الكتريك مانند سيليكا تشكيل شده اند كه با يك لايه فلزي فوق العاده نازك(به عنوان مثال طلا) پوشش داده شده اند. نانوشلهاي طلا، داراي خواص فيزيكي مشابه به آنهايي هستند كه از كلوئيدها طلا ساخته شده اند. پاسخهاي نوري نانوشلهاي طلا به طور قابل توجهي به اندازه نسبي هسته نانوذرات و ضخامت لايه طلا بستگي دارد. دانشمندان قادرند نانوشلهايي را بسازند كه ملكولهاي آنتي ژنها بر روي آنها سوار شوند و در مجموع سلولهاي سرطاني و تومورهاي موجود را تحت تاثير قرار دهند. اين ويژگي مخصوصا در رابط با نانوشلها مي باشد كه اين ساختارها قادرند فقط تومورهاي موجود را تحت تاثير قرار دهند و سلولهاي مجاور تومور دست نخورده باقي مي ماند. از طريق حرارتي كه به طور انتخابي در سلولهاي توموري ايجاد مي كند منجر به از بين بردن اين سلولها مي شود
4-14-2كاربردهاي نانوتكنولوژي در علوم دامي
سلامتي دامهاي اهلي از جمله مسائلي است كه با اقتصاد دامداريها در ارتباط مي باشد. يك دامپزشك مي نويسد كه "علم نانوتكنولوژي توانايي و پتانسيل بالقوه اي بر روي رهيافتهاي آتي دامپزشكي و درمان دامهاي اهلي خواهد داشت". تامين اقلام غذايي براي دامهاي اهلي همواره با افزايش هزينه و نياز به مراقبتهاي خاص دامپزشكي و تجويز دارو و واكسن همراه بوده است و نانوتكنولوژي توانايي ارائه راهكارهاي مناسب براي حل اين معضلات را دارد.
سيستمهاي سنتيتيك آزاد كننده مواد داروئيامروزه مصرف آنتي بيوتيكها، واكسنها، پروبيوتيكها و عمده داروها از طريق وارد كردن آنها از راه غذا يا آب دامها و يا از راه تزريق عضلاني صورت مي گيرد. رها سازي يك مرحله اي دارو در برابر يك ميكروارگانيزم علارغم تاثيرات درماني و اثرات بازدارنده پيشرفت يك بيماري معمولا با بازگشت مجدد علائم بيماري وتخفيف اثرات دارويي مصرفي همراه است. روشهاي موجود در سطح نانو، قابليت تشخيص و درمان عفونت،اختلالات تغذيه اي و متابوليكي را دارا مي باشد. سيستمهاي سنتتيك رها سازي دارو مي تواند خواص چند جانبه براي حذف موانع بيولوژيكي در افزايش بازده درماني داروي مورد استفاده و رسيدن آن به بافت هدف داشته باشد كه از جمله اين خواص مي توان به موارد ذيل اشاره كرد.1- تنظيم زماني مناسب براي آزاد سازي دارو 2- قابليت خود تنظيمي3- توانايي برنامه ريزي قبليبنابراين در آينده نزديك پيشرفتهاي بيشتر تكنولوژي امكانات زير را فراهم مي كند:1- توسعه سيستمهاي سنتيتيك رها سازي داروها،پروبيوتيكها، مواد مغذي2- افزايش سرعت شناسايي علائم بيماري و كاربرد روشهاي درماني سريع3- توسعه سيستمهاي رها سازي اسيدهاي نوكلئيك و مولكولهاي DNA4- كاربرد نانومولكولها در توليد واكسنهاي داميتشخيص بيماري و درمان دامهاتصور امكان تزريق نانوپارتيكها به دامها و فعال شدن تدريجي ماده موثر همراه با اين نانوذرات در بدن حيوان براي از بين بردن و تخريب سلولهاي سرطاني، افق تحقيقاتي جديدي را به روي محققان بازكرده است. محققان دانشگاه رايس مراحل مقدماتي كاربرد نانوشلها را براي تزريق به جريان خون ارزيابي كردند. اين ذرات نانو به گيرنده هاي غشاسلولهاي سرطاني متصل مي شوند و با ايجاد امواج مادون قرمز باعث بالا رفتن دماي سلولهاي مذكور به 55 درجه و تركيدن و از بين رفتن تومورهاي موجود مي گردند. همچنين نانوپارتيكهايي كه از اكسيدهاي آهن ساخته مي شوند، با ايجاد امواج مگنتيك در محل استقرار سلولهاي سرطاني باعث از بين بردن اين سلولها مي شوند. يكي از اساسي ترين محورهاي تحقيقاتي كنوني، توسعه سيستمهاي رها سازي DNA غيرزنده، با بازدهي مناسب و با حداقل هزينه و عوارض جانبي و سمي مي باشد، كه در ژن درماني مورد استفاده قرار مي گيرند. اصلاح نژاد دام مديريت تلاقي و زمان مناسب جفتگيري دامها، از جمله مواردي است كه در مزارع پرورش گاوشيرده به هزينه و زمان طولاني نياز دارد. از راهكارهايي كه اخير مورد استفاده قرار گرفته است، استفاده از نانوتيوپها خاص در داخل پوست مي باشد كه زمان واقعي پيك هورمون استروژن و وقوع فحلي را دار دامها نشان مي دهد و لذا با علائمي كه سنسورهاي موجود به دستگاه مونيتور مي فرستد، زمان دقيق و واقعي تلقيح را به دامدار نشان مي دهد.

